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Groups

Definition. A group is a set G, together with a binary
operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g * h is an element of G;

(G2: associativity)
(gxh)xk=gx(hxk) forall g,h ke G,

(G3: existence of identity)
there exists an element e € G, called the identity (or unit)
of G, suchthat exg=gxe=g forall ge G;

(G4: existence of inverse)
for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg =e.

he group (G, *) is said to be commutative (or Abelian) if
It satisfies an additional axiom:

(G5: commutativity) gxh=hxg forall g, he G.



Order of an element

Let g be an element of a group G. We say that g has finite
order if g” = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g and denoted o(g).
Otherwise g is said to have the infinite order, o(g) = oc.

Theorem 1 (i) If the order o(g) is finite, then g" = g° if
and only if r = s mod o(g). In particular, g" = e if and
only if o(g) divides r.

(ii) If the order o(g) infinite, then g" # g° whenever r # s.

Theorem 2 |f G is a finite group, then every element of G
has finite order.

Theorem 3 Let G be a group and g, h € G be two
commuting elements of finite order. Then gh also has a

finite order. Moreover, o(gh) divides lem(o(g), o(h)).

Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G.

Theorem Let H be a nonempty subset of a group G and
define an operation on H by restricting the group operation of
G. Then the following are equivalent:

(i) H is a subgroup of G;

(ii) H is closed under the operation and under taking the
inverse, thatis, g.he H =— ghe€ H and

geH = g ' eH;

(iii) g,he H = gh ' e H.

Corollary If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G;
(ii) for any g € H the inverse g~ ' taken in H is the same as

the inverse taken in G.



Examples of subgroups: e (7Z,+) is a subgroup of (R, +).

e (Q\ {0}, x) is a subgroup of (R \ {0}, x).

e The alternating group A(n) is a subgroup of the symmetric
group S(n).

e The special linear group SL(n,R) is a subgroup of the
general linear group GL(n,R).

e Any group G is a subgroup of itself.

e If e is the identity element of a group G, then {e} is the
trivial subgroup of G.

Counterexamples: e (R \ {0}, x) is not a subgroup of
(R, +) since the operations do not agree.

e (Z,,+) is not a subgroup of (Z,+) since Z, is not a
subset of Z (although every element of Z, is a subset of Z).
e (Z\ {0}, x) is not a subgroup of (R\ {0}, x) since

(Z \ {0}, x) is not a group.

Generators of a group

Theorem 1 Let H; and H, be subgroups of a group G.
Then the intersection H; N H, is also a subgroup of G.

Proof: g.he HHNH, — g,he H; and g,h € H>
=== gh_l € Hy and gh_l cH = gh_le Hy N Ho.

Theorem 2 Let H,, o € A be a collection of subgroups of a
group G (where the index set A may be infinite). Then the
intersection () H, is also a subgroup of G.

Let S be a nonempty subset of a group G. The group
generated by S, denoted (S), is the smallest subgroup of G
that contains the set S. The elements of the set S are called
generators of the group (S).

Theorem 3 (i) The group (S) is the intersection of all
subgroups of G that contain the set S.

(i1) The group (S) consists of all elements of the form
819 - .. &k, Where each g; is either a generator s € S or the
inverse s~ ! of a generator.



Cyclic groups

A cyclic group Is a subgroup generated by a single
element.

Cyclic group (g) ={g" : n € 7Z}.
Any cyclic group 1s Abelian.

If g has finite order n, then (g) consists of n
elements g.g%. ..., g" . g"=e.

If g is of infinite order, then (g) is infinite.

Examples of cyclic groups: 7, 37, Zs, S(2), A(3).
Examples of noncyclic groups: any non-Abelian
group, Q with addition, Q@ \ {0} with multiplication.

Cosets

Definition. Let H be a subgroup of a group G. A coset

(or left coset) of the subgroup H in G is a set of the form

aH = {ah: he H}, where a € G. Similarly, a right coset of H
in G is a set of the form Ha = {ha: he H}, where a € G.

Theorem Let H be a subgroup of G and define a relation R on G
by aRb <= a € bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b~laec H.

Reflexivity: aRa since a la=ec H.

Symmetry: aRb —> b lacH — alb=(bla)leH
— bRa. Transitivity: aRb and bRc —> b la,c'be H
=5 g a={c )b aje H = afc

Corollary The cosets of the subgroup H in G form a partition of
the set G.

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G. Clearly, the equivalence class of g i1s gH.



Examples of cosets
o G=7, H= nZ.

he coset of a € Z is [a], = a+ nZ, the congruence class of
a modulo n.

e G=R3 Histhe plane x +2y —z = 0.

H is a subgroup of G since it is a subspace. The coset of
(X0, Y0, 20) € R> is the plane x +2y — z = xp + 2yp — 2
parallel to H.

e G=5(n), H=A(n).
There are only 2 cosets, the set of even permutations A(n)
and the set of odd permutations S(n) \ A(n).

e G isanygroup, H=G.

There is only one coset, G.

e G isany group, H=1{e}.

Each element of G forms a separate coset.

Lagrange’s theorem

The number of elements in a group G is called the order of G
and denoted o(G). Given a subgroup H of G, the number of
cosets of H in G is called the index of H in G and denoted

(G : H].

Theorem (Lagrange) If H is a subgroup of a finite group
G, then o(G) =[G : H] - o(H). In particular, the order of H
divides the order of G.

Proof: For any a € G define a function f : H — aH by
f(h) = ah. By definition of aH, this function is surjective.
Also, it is injective due to the left cancellation property:
f(hl) — f(hz) =% afh =gl = .=y

Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H. Since the cosets of H in G partition the set G,

the theorem follows.



Corollaries of Lagrange’'s theorem

Corollary 1 If G is a finite group, then the order of any
element g € G divides the order of G.

Proof: The order of g € G is the order of the cyclic group
(g), which is a subgroup of G.
Corollary 2 Any group G of prime order p is cyclic.

Proof: Take any element g € G different from e. Then
o(g) # 1, hence o(g) = p, and this is also the order of the
cyclic subgroup (g). It follows that (g) = G.

Corollary 3 If G is a finite group, then g°(¢) =1 for all
g € G.

Proof: g" =1 whenever n is a multiple of o(g).



